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Orientations of point groups-phase choices in the 
Racah-Wigner algebra 

M F Reid and P H Butler 
Physics Department, University of Canterbury, Christchurch 1, New Zealand 

Received 7 January 1980, in final form 25 February 1980 

Abstract. The S03-S02-3jm’s  (the ‘ 3 j  symbols’ of angular momentum) are known to 
incorporate no information about the orientation of axes and may be calculated from a 
knowledge of character theory alone, together with some freedom of choice of phases. For 
many point-group embeddings, at least once in every finite-group basis of SO3, an extra 
phase choice arises in the 3 jm calculation. We show that choosing this phase corresponds to 
choosing the orientation of the symmetry axes of the groups. 

I. Introduction 

Elementary applications of group theory in physics and chemistry yield qualitative 
information such as degeneracies and selection rules. To produce quantitative results 
requires the use of the Wigner-Eckart theorem and therefore the calculation of j m  
factors and j symbols (equivalently coupling and recoupling coefficients). 

Most calculations proceed from an explicit definition of the symmetry axes or the 
generators of the group (e.g. Harnung and Schaffer 1972, Kibler and Grenet 1977, 
Kramer 1968). It has been shown that the j symbols and jm factors for arbitrary 
compact groups may be calculated from a knowledge of character theory alone and a 
methodology has been developed along these lines. It has been applied to SO3, the 
embedding SO32SO2, the point groups T and C3, the Lie groups in the chain 
E7 3 SUS X SU3 2 SUZ X SU3 X SUS and the dihedral and cyclic groups. See Butler 
(1975, 1976, 1979), Donini (1979, pp 123-77), Butler and Wybourne (1976a, b), 
Butler et a1 (1978, 1979), Butler and Reid (1979) and Prasad and Bharathi (1980). 

Several questions remain unanswered. Butler and Wybourne (1976a) were unable 
to demonstrate the completeness of their equations for all groups. Furthermore, in 
applications involving point groups it may be necessary to know where the symmetry 
axes lie. These calculations appear to contain no such information. 

Within the Racah-Wigner algebra one may freely choose certain coupling and basis 
phases (Butler 1975, Butler and Wybourne 1976a). We shall show that for many 
point-group embeddings an extra phase choice (in addition to the above) must be made. 
This special phase choice affects the orientation of the symmetry axes of the group and 
we shall therefore refer to it as an orientation phase. 

The embedding D3 1 C3 is discussed in § 4 as an example. We show that the choice 
of ofientation phase determines whether CZy or Czx (or neither) is in D3. In 0 5 
orientation phases for other point groups are discussed. We show how the orientation 
of the symmetry axes may be determined once the 3jm factors have been calculated. 
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All finite group bases of SO3 involve at least one orientation phase. This cor- 
responds to the freedom one has when choosing axes for point groups and is largely 
overlooked in calculations which fix the axes before calculating 3jm’s. It has been noted 
by Boyle and Schaffer (1974) that different axis choices for the icosahedron are not 
equivalent. This is a special example of the phenomenon we discuss here. 

We restrict ourselves to pure rotation groups in what follows. The properties of 
reflection-rotation and reflection-inversion groups are similar (but not trivially so-see 
Butler 1980). 

2. Free phases in the Racah-Wigner algebra 

The free phases which appear in the calculation of j symbols and jm factors were 
discussed by Butler (1975). Butler and Wybourne (1976a) gave a method of calculation 
which was based on building up from any chosen faithful irrep, called the primitive 
irrep. They proved that all 3jm’s and 6j’s could be calculated recursively once those 
containing the primitive irrep were known, but were unable to give a complete method 
for calculating primitive 6j’s and 3jm’s. 

The reader is referred to the above for notation and definitions and for a discussion 
of the free phases involved in the calculation of j symbols. Here we shall be concerned 
only with jm factors which, unlike the j symbols, contain basis information, being 
dependent on the branching of the irreps of a group to its chosen subgroup. For 
example, the S03-S02-3jm factors, the ‘3 j  symbols’ of angular momentum, depend on 
the SO3-6j symbols, and on the S03-S02-branching rules and nothing else (Butler 
1976). In building up a set of primitive 3jm factors, certain branching multiplicity 
separations and choices of phase must be made. These choices are choices of the 
relationship among the partners of an irrep, and as such correspond to choices of 
the form of the irrep matrices (Butler 1975, equation (1 1 .6 ) )~  We make these choices in 
the sequence used in Butler and Wybourne (1976a, 0 6) and Butler and Reid (1979). 
The 2jm factors are first chosen, real and of a sign such that as many 3jm factors as 
possible are real. This action fixes the relationship between each pair of complex 
conjugate kets. Then for each (non-primitive) pair there is one free phase, which is fixed 
when the ket first arises in the 3jm calculation. In addition there may be orientation 
phases. We give examples in § 4 and § 5. 

3. Transformation of basis 

In the following sections we shall need to consider transformations between bases. Let 
the kets lhi) form a G=H=K basis and Ihl)‘ form a G z H ‘ x K  basis. The trans- 
formation coefficients between the bases may be calculated by rewriting equation (1 1.6) 
of Butler (1975) as 

(3.1) 

If, in this equation, A is chosen to be the primitive irrep we have a recursion relation for 
all transformation coefficients in terms of primitive G-H-K-3jm’s, primitive G-H’-K- 
33m’s and the primitive transformation coefficients. 
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We label the identity and primitive irreps of point groups by 0 and 4 respectively. 
The basis labels (i and 1 in (3.1)) may in practice be several point-group labels, 
depending on which group chain is used. For example, the partners of the irrep 1 of SO3 
are 1;;) and 1 ; - f )  in the JM basis. In the S03-D,-Ds-D3-C3 basis discussed in 0 5 they 
are /TSTTT) and I S S S T - T ) .  

The primitive trpsformation coefficients are not all independent. Because of our 
2jm choices ((:) = (i) = 1 for all embeddings) one may deduce from equation (3.1) that 

1 1 1 1 1  1 1 1 1  1 

(00~00)‘ = 1 
(i$l$;)f = A  = ( I - T I Z - T ) ’ *  1 1 1  1 ( ‘ - f i $ $ ) r  = B = -(--I- ; ; ; - ; ) I *  - (3.2) 

or equivalently 

I$$)’ = [$$A + Ii-$)B I$-$)! = li$)( -B*)  + 14- $)A*. 

These restrictions are just those for having the primed kets related to the unprimed by a 
rotation R ( a ,  p, y )  described by the Euler angles a ,  p, y (see Messiah 1965, appendix 
C), where 

(3.3) A = cos $p B = sin $p e-iv/2. 

The point-group basis of SO3 described by a given set of 3jm symbols may be 
transformed to the JM basis by using a particular A,  B in equation (3.1). This is the 
converse of the approach of many other authors who first calculate the transformation 
coefficients in order to be able to calculate 3jm symbols. See for example Dobosh 
(1972), Golding and Newmarch (1977), Harnung and Schaffer (1972), Kibler and 
Grenet (1977) and Kramer (1968). 

4. Example of D33CC3 

The j symbols and jm factors of all dihedral and cyclic groups were discussed by Butler 
and Reid (1979) and a possible choice of phases was suggested. In this section we shall 
analyse the repercussions of the orientation phase choices which occur in the embed- 
dings D, I> C, and Dodd z> C2 by considering the embedding D3 3 C3 in detail. 

The above paper introduced a notation which used integers and half integers to label 
true and spin irreps respectively, in analogy to SO3 and SO2. The character table (table 
1) gives the correspondence between our notation and those of some other authors. 

The branching rules for D3 2 C3 are 

(4.1) ;+;+-z 1 3 3  -p;. 3 5 + y  d + O  o + o  
We noted in § 2 that all phase choices in the 3jm calculation are contained in the 

2jm’s and primitive 3jm’s. The 2jm’s are chosen in such a way that as many 3jm’s as 
possible may be real. The set 

1 1 - 
(;)=1, ( I ) = l ,  2 ( ? ) = - l ,  -2 ( ; )=- l ,  

3 3 

(:,=1, ( - i ) = l ,  ( ; )=I ,  (-;)=-I (4.2) 
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Table 1. Character table for D3. D3 consists of: C3: three-fold rotations about some axis; 
C;: two-fold rotations about three axes perpendicular to the three-fold axis. Our irrep 
labels are shown, also those of Griffith (1961), Ballhausen (1962) and Koster et a1 (1963). 
Wz follow Lax (1974) in using the active convention for rotations. 

Griffith, Koster 
Ballhausen et al 

1 1 1 1 1 1  
2 -2 I - 1  0 0 
1 1 1 1 -1 --I 
2 2 -1 -1 0 0 
1 -1 -1 1 -i i 
1 -1 -1 1 i --i 

is suitable. There are only four inequivalent non-trivial primitive D3-C3-3jm factors: 

The orthogonality relations (Butkr and Wybourne 1976a, equations (35) and (36)) 
show that all have a norm of 1/d2.  

There is a free phase for each ket. However the phases of I+--$) ,  11 - 1) and 14-2) are 
related by the 2jm choices to their complex conjugates: 

(Butler and Wybourne 1976a, equation (29)). Furthermore, because the 3 jm 's involve 
only relative phase information, the primitive ket I$$) does not contribute a freedom to 
the algebra. Therefore there are only three primitive 3jm's which have this kind of 
phase freedom associated with them. Because 160) is a real ket its choice is merely a 
sign. This corresponds to the fact that (4.3) is restricted to being real by the complex 
conjugation and column interchange symmetries (Butler and Wybourne 1976a, equa- 
tions (37) and (38)). For (4.4) and (4.5) the choice is an arbitrary phase, corresponding 
to the kets 111) and I$,:>. We choose (4.3)-(4.5) as 1/h. At this stage there appear to be 
no free phases left and we would expect the calculation of all other 3jm's to be 
straightforward. However, none of the equations (Butler and Wybourne 1976a, 
P 6-8 8) tells us the phase of (4.6). This counters the speculation at the end of 0 7 of 
Butler and Wybourne (1976a). 

Let the phase of (4.6) relative to (4,3)-(4.5) be ei8. We shall show that elH is indeed 
free, but that it has an effect on the orientation of the group. 
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In order to do this we consider the transformation from the point-group basis 
SO3 3 D, 3 D6 3 D3 3 C3 to the JM basis, as discussed in § 2. We use the phase choices 
of Butler and Reid (1979) for the S03-Dm-D6-D3 chain and we use the standard 
S03-S02-3jm's. Taking A = 1, B = 0 in (3.2) and then using (3.1) recursively gives the 
SO3 13 D, I) D6 2 D3 2 C3 kets (primed) in terms of the JM kets: 

- 
1323 2 3 1 -  3 ;  1/J2+/ -  - - 2) e-''/ J2. (4.8) I$$$$$)! = 114) e"/&+ /$-$)(-1 J2) 2 2 2 - 2 2 )  -12 ) 

Rotation by an angle $T about the z axis (Messiah 1965, equation (C63)) shows that the 
z axis is the three-fold axis: 

(4.9) 3 3 3 3 3  I 3 3 3 3 3  f R($T, Z ) I T Z T I Z )  = -/TZZII) 

(see figure 1). The two-fold axes are therefore in the x y  plane. 

Figure 1. Axes for D3. The unprimed and primed axes refer to equations (4.10) and (4.11) 
respectively. a = n-/6 corresponds to 0 = n-/2 in (4.14). 

If 0 = 0 in (4.8), then 
3 3 3 3 3  . 3 3 3 3 2  f 3 3 3 3 3  3 3 3  3 3  f R(T, x)jZlz5z)f = -1Izzm)  R(77, Y ) ~ Z ~ Z Z Z ) '  = - I Z Z T - T Z )  (4.10) 

(Messiah 1965, equations (C61) and (C62)). In this case the operator R(rr ,x )  is 
contained in the group while R (T, y )  is not. If 6, = i~ then 

3 3 3 3 3  I 1123 3 2 r  3 3 3 3 3  * 3 3 3 3 3  I R(T, x)lZZZz%) = - 1 2 2 2 - 2 2 )  R(T,  y ) / ~ ~ ~ 2 ~ ) ' = - 1 1 5 2 2 ~ ~ ) .  (4.11) 

R(T,  y )  is now in the group (see figure 1). (For other choices of the phase e" neither 
R(T ,  x )  nor R(T, y )  is in the group.) 

Of the phase choices of (4.3)-(4.6), only the phase of (4.6) relative to (4.5) affects the 
orientation of the two-fold axes. This may be seen by repeating the above arguments 
with arbitrary phases for (4.3)-(4.6). 

Now consider two sets of 3jm's for D3 3 C3 for which the phase of (4.4) has been 
chosen differently (but (4.3)-(4.5) are identical): 

(4.12) 

We may transform between two S03-D,-D6-D3-C3 bases, one with the unprimed and 
the other the primed choice; and also rotate the primed basis by an angle a / 2  about the t 
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axis by choosing A =e-'"", B = 0 in (3.3). The relationship between the J = $ kets is 
then: 

(223 3 3 1 3 3 3 3 3  I - 1. if3 -3ia/2 3ia/2 
2 2 2 - 2 2 2 2 2 2 2 )  -2(e e -e  ). (4.13) 

If the unprimed and the primed D3 irreps are not to be mixed, then one requires 

(4.14) = e3ia, 

Thus if a = 0, eie = 1 only, while if 8 = 0 then a must be a multiple of $ 7 ~ .  Observe that a 
$ 7 ~  rotation about the z axis 1s a symmetry operation of D3. See figure 1. 

We have shown that a special orientation phase choice exists which changes the 
orientation of the group D3 in the C3 basis. (4.14) proves that it is equivalent to a 
rotation about the z axis. In the next section we shall discuss similar phase choices for 
other groups. 

5. Orientation phases in the other point groups 

In § 4 we showed that for D3 3 C3 there was a phase choice which was equivalent to a 
rotation about the z axis. For all D, 3 e,, Dadd 3 C2 and T 3 C3 a similar orientation 
phase choice exists. For many embeddings, e.g. SO3 3 S02, SO3 3 0, D,, 2 D,, 
0 3 D4 and 0 3 T, no such choice exists. For 0 3 D3, T 3 D2, K 13 T and K 3 D5 we 
must choose between a pair of double roots. In the double root cases the choice is still 
equivalent to a rotation about the z axis but now there are only two possible 
orientations. 

As an example of the double root case we consider T 3 D2. Butler (1979) proved 
that some 3jm factors of T 3 D2 must be complex. In the calculation of T 3 D2 3jm's by 
the methods described in 0 4, a similar problem arises-once all the phases are fixed. 
The real part and the magnitude of 

(5.1) 

may be calculated, but not the sign of the imaginary part (table 2 gives the cor- 
respondence between our notation and some others). As in D 4 the choice afiects the 
orientation of the tetrahedron and corresponds to the two distinct ways of orienting a 
tetrahedron about Dz axes (see figure 2). 

The two phase choices, like the figures, are related by a &r rotation. Table 3 shows c 
transformation between the 0 3 T 2 D2 3 C2 bases with two root choices in which a 
rotation of $T about the t axis has been used to bring the two tetrahedra into 
coincidence. (The fact that D2 3 C2 contains an orientation phase i s  irrelevant because 
it is the same in both schemes.) Note that the rotation mixes the irreps of D2 but not 0. 
This is because a in rotation about the z axis is an octahedral operation (with this 
orientation), but not a tetrahedral or D2 operation. In tables 3 ,4  and 5 kets in one basis 
are written as a sum of kets in another basis in the format: lket ill one basis) = /ket 
in the othzr basis) x (transformation coefficient). In table 3 the labels on both sides of 
the equations are irrep labels for the groups 0, T, DZ and C2 (see table 2). 
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Table 2. Correspondence between our notation and that of Koster eta1 (1963) and Griffith 
(1961). 

Cyclic Group Cz 
0 ;  - 4 1  

Koster et ul rl r3 r4 rz 
Dihedral Group Dz 

o d d i i  
Koster et a1 rl r5 r3 rz r4 
Griffith Ai E' B1 Bz B3 

Cyclic Group C4 
0 f -4 1 2 -2 2 

Koster et a1 rl r5 r6 r3 r4 rs r7 rz 
Dihedral Group D4 

O f 6 1 3 2 2  
Koster et a1 rl r6 rz r5 r7 r3 r4 
Griffith A, E' A2 E E" Bi Bz 

Tetrahedral Group T 
0 f 1 3  - ; 2  -2 

Koster et a1 r1 r5 r4 r6 r7 rz r3 - 
Griffith Ai E' T E" E" E 

Octahedral Group 0 
o f i 4 2 i 4 6  

Koster et a1 rl r6 r4 rs r3 rs r7 r2 
Griffith A, E' Ti U' E T2 E" A2 

Figure 2. Orientations of a tetrahedron about D2 axes. 
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Table 3. Transformation between two 0 3 T 3 D2 3 Cz bases. The format is: lket with i-ve 
root choice in equation (5.1)) = /ket with -ve choice) x (transformation coefficient). The 
labels are 0, T, D2 and C L  irrep labels (see table 2). 

/ 1 1 0 " 0 > = j 1 1 6 0 > + 1  
/ 1 1 1 1 > = / 1 1 T l > + i  
1 1  1 T 1 >  = 1 1  1 1  l > + i  

1 2  2 0 o >  = 1 2  2 0 0 > + 1  
1 2 - 2  0 o> = 1 2 - 2  0 0>+1 

j K O O O >  = / O " O O O > + ~  

Table 4. Transformation of SO3 3 0 3 D4 3 C4 to the JM basis with the D4 2 C4 orientation 
phase choice of equation (5.2). The format is: 1SO30D4C4 ket) = Z M  /JM ket) x (trans- 
formation coefficient). 

1 0  0 0 o> = 1 0  O > + l  

1 f t f +> = I f  + > + I  
I f t f - f >  = I + - + > - c l  

1 1 1  d O >  = 1 1  O > + l  
1 1  1 1  I >  = 1 1  I > - 1  
~ 1 1 1 - I >  = I 1 -1>-1  
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Table 4.--continued. 

1 2  2 0 o> = 1 2  o>-1 
1 2  2 2 2 >  = ~ 2 2 > - 1 / d 2  + 1 2 - 2 > - 1 / \ / 2  
1 2  i 1 1 >  = j 2 I > - 1  
1 2  Y I - I >  = 1 2 - 1 > + 1  
1 2  i 2 2 >  = I 2  2 > 1 1 / \ / 2  + 1 2 - 2 > - 1 / \ / 2  

Table 5. Transformation of SO, 3 0 3 D4 2 C4 to the JM basis with the orientation phase 
choice of equation (5.3). The format is: /S030D4C4 ket) = X M  1JM ket) x (transformation 
coeficient). 

~ O O O O >  = / 0 0 > + 1  
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Table 5.--continued 

~ 1 1 d o >  = 1 1  0>+1 
1 1  1 1  I >  = 1 1  I > - 1  
j 1 1 I - I >  = 1 1 - 1 > - 1  
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Boyle and Schaffer (1974) showed that orientations of the icosahedron unrelated by 
icosahedral operations (7r/2 apart) gave distinct icosahedral tensors. Their two orien- 
tations correspond to the scheme K = T 3 D 2 = C 2  with the two choices of root for 

Since all finite group bases of SO3 contain an embedding of a cyclic group in a 
dihedral group or the embedding T 3 C3 (Koster et a1 1963), any application of such 
bases involves an orientation phase. This corresponds to the freedom one has to choose 
the orientation of the x and y axes, the z axis being determined, up to group operations, 
by the choice of groups. For SO3 3 0 3 D3 3 CJ the z axis is three-fold, through a 
corner of the cube; for SO3 =) 0 3 D4 2 C4 the z axis is four-fold, through a face of the 
cube. 

Consider SO3 3 0 3 D4 3 C4. Tables 4 and 5 show the transformation of this basis 
to the JM basis for two particular choices of orientation phase for D4 3 C4: 

T 2 D2. 

A calculation of the character of the irrep 6 of 0 under a two-fold rotation about the y 
axis (see 0 4) shows that the choice (5.2) corresponds to having the x and y axes through 
the faces of the cube and (5.3) to having the x and y axes through the edges. See figure 3 
and the character tables of Koster et a1 (1963). In the former case the rotation matrices 
(Messiah 1965, appendix C) may be used to show that the 11 1 axis is a three-fold axis of 
0. In the latter the 101 and 110 axes are three-fold. 

Figure 3. Axes of a cube. The unprimed and primed axes correspond to the choices (5.2) 
and (5.3) respectively. 

The fourth-order scalar operator for octahedral symmetry with a four-fold z axis is 
commonly written 

c4 = c: + dqiz(c: + C!,) (5.4) 
(e.g. Hutchings 1964). This corresponds to table 4-in table 5 the first sign in (5.4) is 
changed. Table 4 is similar to the table of Ballhausen (1962, p 9 3 ,  the differences being 
due to the free (non-orientation) phases for the SO3 3 0 3 D4 13 C4 kets. 
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6. Branching rules 

The orientation phase problem must not be confused with another problem-the 
existence of several. sets of valid branching rules for some point-group embeddings. 
Branching rules depend on the labelling of classes, for this determines which operations 
are to be discarded on going from the group to the subgroup. 

An extreme case is the embedding D2 3 Cz. There are, in addition to the identity, 
three one-dimensional irreps of Dz: 6 , 1  and 7 .  These irreps are not distinguished by the 
product rules of Dz, and three different Dz 13 CZ branching rules are possible since any 
one of these one-dimensional irreps of Dz may reduce to the identity irrep of Cz. The 
usual branching (Koster eta1 1963) is 6 + 0; the others correspond to relabelling the x ,  y 
and z axes of DZ (Koster’s Cz axis is z ) .  

7. Conclusions 

The existence of the orientation phases clarifies the speculations of Butler and 
Wybourne (1976a). The phase choices discussed there have no effect on the orientation 
of the group-changing them merely changes the phases of the partners. (In the 
presence of branching multiplicity this phase becomes a unitary matrix.) Equation 
(4.13) shows that a change in orientation phase mixes irreps of the group, i.e. the groups 
are no longer identical, merely isomorphic. Properties of transformations between 
bases chosen with respect to isomorphic subgroups of a symmetric group have been 
studied by Sullivan (1978). 

In some applications it is important to know where the symmetry axes lie for the 
given set of point-group j and jm symbols. Sections 4 and 5 showed how to find such 
axes, and, further, indicated how these may be rotated, either by changing the 
orientation phase, or by rotating all partners. 
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